
Data-driven Programming

By

Johan Nel

A series of articles explaining the principles

Article 5: Abstracting the data interface layer

November 2014

 i

Table of contents

1. WHAT WE HAVE LEARNED...1

2. GETTING THE DATA INTO OUR APPLICATION..1

3. IDENTIFY REPLICATED CODE, ABSTRACT AND RE-USE..3

4. DATA INTERFACE LAYER ...4

5. ABSTRACTING OUR INTERFACE LAYER..6

6. SUMMARY...8

Listings

LISTING 1: PSEUDO CLASS LAYOUT... 1

LISTING 2: PSEUDO MENU CLASS LAYOUT.. 2

LISTING 3: EXAMPLE STRING REVERSAL PROCESS.. 3

LISTING 4: STRING REVERSAL FUNCTION.. 4

LISTING 5: INTERFACE BETWEEN PRESENTATION LAYER AND MEMBERS.. 7

Figures

FIGURE 1: HELLO WORLD APPLICATION AND MEMBER DETAIL .. 3

FIGURE 2: HELLOWORLDVN WITH A MENU STRIP.. 7

FIGURE 3: COMPLETED HELLOWORLDVN APPLICATION.. 8

 1

1. What we have learned

We have set the foundation for our methodology in the previous articles. We also learned

that presentations (User Interfaces) have similarities between them and we therefore can make

a statement that AbstractForm = AbstractMenu. In the previous article we defined a method

for storing our presentation layer data in a datastore. We determined that we could use a tool

(jhnIniFile) to get that data into our application. We now need something to present this data

to our classes.

Lets get developing!

2. Getting the data into our application

In article 4 we identified that it is of no use to present our menu data in isolation. We

enhanced our datastore to also contain the data of application and we told application data

that it contains a member with name menumain that is of type menu. To access our datastore

we need to tell jhnIniFile where it resides. A logical way to do this is to make use of the

internal Application.ExecutablePath property. Our jhnIniFile requires the extention of the

datastore to be “ini”. To make our application(s) datastore aware, we use the convention of

“<Location><Application>.exe.ini”. It provides us with a consistent interface, as long as we

ensure our application and datastore resides in the same location (Listing 1).

Listing 1: Pseudo class layout
CLASS ddForm INHERIT System.Windows.Forms.Form
 CONSTRUCTOR()
 SUPER()
 SELF:InitializeForm()
 RETURN

 METHOD InitializeForm() AS VOID
 LOCAL oIni AS jhnIniFile
 oIni := jhnIniFile{Application.ExecutablePath + " .ini"}
 SELF:Name := oIni:GetString("applicationform", "n ame")
 SELF:Text := oIni:GetString("applicationform", "t ext")
 SELF:SuspendLayout()
 SELF:ControlsAdd()
 SELF:ResumeLayout()
 RETURN

 METHOD ControlsAdd() AS VOID
 LOCAL oIni AS jhnIniFile
 LOCAL sControls AS STRING
 LOCAL aControls, aKV AS STRING[]
 LOCAL lstControls AS SortedList<STRING, STRING>
 oIni := jhnIniFile{Application.ExecutablePath + " .ini"}
 sControls := oIni:GetString("applicationform", "c ontrols")
 aControls := sControls:Split(";":ToCharArray(), S tringSplitOptions.RemoveEmptyEntries)
 lstControls := SortedList<STRING, STRING>{}
 FOREACH ctrldef AS STRING IN aControls
 aKV := ctrldef:Split(":":ToCharArray())
 IF aKV:Length > 0 .AND. aKV[1]:Length > 0
 lstControls:Add(aKV[0], aKV[1])

 2

 ENDIF
 NEXT
 FOREACH key AS STRING IN lstControls:Keys
 aControls := oIni:GetSection(key)
 FOREACH ctrl AS STRING IN aControls
 IF ctrl:StartsWith(lstControls:Item[key])
 MessageBox.Show(ctrl)
 // Add member to Controls via some interface
 // SELF:Controls:Add(SomeInterface(ctrl))
 ENDIF
 NEXT
 NEXT
 RETURN

END CLASS

In the previous article we have said AbstractApp = AbstractMenu. Lets give it a try and see if

we can use copy and replace methodology to change our form class into a menu class (Listing

2).

Listing 2: Pseudo menu class layout
CLASS ddMenu INHERIT System.Windows.Forms.MenuStrip

 CONSTRUCTOR()

 SUPER()
 SELF:InitializeMenu()

 RETURN

 METHOD InitializeMenu() AS VOID
 LOCAL oIni AS jhnIniFile
 oIni := jhnIniFile{Application.ExecutablePath + " .ini"}
 SELF:Name := oIni:GetString("applicationform", "n ame")
 SELF:Text := oIni:GetString("applicationform", "t ext")
 SELF:SuspendLayout()
 SELF:MenuItemsAdd()
 SELF:ResumeLayout()
 RETURN

 METHOD MenuItemsAdd() AS VOID
 LOCAL oIni AS jhnIniFile
 LOCAL sControls AS STRING
 LOCAL aControls, aKV AS STRING[]
 LOCAL lstControls AS List<STRING>
 oIni := jhnIniFile{Application.ExecutablePath + " .ini"}
 sControls := oIni:GetString("applicationform", "c ontrols")
 aControls := sControls:Split(";":ToCharArray(), ;

StringSplitOptions.RemoveEmptyEntries)
 lstControls := List<STRING>{}
 FOREACH ctrldef AS STRING IN aControls
 aKV := ctrldef:Split(":":ToCharArray())
 IF aKV:Length > 0 .AND. aKV[1]:Length > 0 .AND. aKV[0] == "menu"
 lstControls:Add(aKV[1])
 ENDIF
 NEXT
 FOREACH key AS STRING IN lstControls
 LOCAL sProperty := oIni:GetString("menu", key) A S STRING
 MessageBox.Show(sProperty)
 // Add member to Controls via some interface
 // SELF:Controls:Add(SomeInterface(sProperty))
 NEXTRETURN

END CLASS

Looking at the above code, although there are some anomalies that will not allow this to to be

called, I believe we have done 90%+ of the job. The menu class still contain some

information that should be part of the application form class and our application form know it

need to add something via SomeInterface, but it is not yet implemented. We have only

 3

achieved to be able to tell our AppForm that is has a name of “HelloWorldVN” and a text

value of “Hello World Vulcan Application”. It is also able to define it will have a member

“mainmenu” and that is has some properties which is of no relevance to AppForm, but it need

to pass that on to something that will know what to do with it (Figure 1).

Figure 1: Hello World Application and member detail

Looking again at our code we can identify that although we created an interface between our

datastore, AppForm and Menu via jhnIniFile, it seems we replicating again. What if for some

reason we change the format of our datastore? We will need to edit all places that our

interface is implemented. If we lucky, we will adapt where applicable to make the changes.

It might also happen that we overlook a change required and injecting our application with a

bug or a behaviour that we don’t expect.

3. Identify replicated code, abstract and re-use

When we need to convert a string into reverse order one way of doing it would be (Listing 3):

Listing 3: Example string reversal process
sString := “Hello world”
nLen := sString:Length
oStack := Stack<STRING>{}
FOR LOCAL i := 0 UPTO nLen – 1

oStack:Push(sString[i])
NEXT
sString := “”
WHILE oStack:HasEntries()

sString += oStack:Pop()
ENDDO

This is fine, however if we need to do it many times in our application, we abstract it (Listing

4):

 4

Listing 4: String reversal function
FUNCTION ReverseString(s AS STRING) AS STRING

LOCAL s := “” AS STRING
LOCAL oStack AS Stack<STRING>
nLen := s:Length
oStack := Stack<STRING>{}
FOR LOCAL i := 0 AS INT UPTO nLen – 1

oStack:Push(sString[i])
NEXT
WHILE oStack:HasEntries()

s += oStack:Pop()
 ENDDO
RETURN s

sString := “Hello world”
sString := ReverseString(sString)

What we currently have is a persistent interface between our data store and our application

via jhnIniFile. However we replicating how we interface between jhnIniFile and our

presentation layer, AppForm and [App]Menu. It is doing the same in both.

4. Data interface layer

We do not want to hardcode the interface to our presentation layer. It means everytime there

is a change in the datastore format we need to go through each presentation layer and ensure it

is adapted to behave correctly.

In abstract terms we would define the path between datastore and presentation layer currently

to be:

DataStore->PresentationLayer(including Internal interface)

We would rather have:

DataStore->Internal interface->PresentationLayer

It is also possible that we will have to provide various formats for the Internal interface to

pass our data through to the PresentationLayer. Can we abstract (generalise) it further? Yes

we can:

DataStore->Internal interface->Universal presentation->PresentationLayer

We have a defined DataStore:HelloWorldVN.exe.ini, we have an interface into our

application:jhnIniFile, and we have PresentationLayer:AppForm and AppMenu, but they both

contain the Interface to our datastore. We need to effectively communicate between

InternalInterface and PresentationLayer, a missing or is it a replicated link...

Over the years I have made many mistakes regarding my implementation. Yes they all

worked, however as one keep on enhancing applications, sometimes you wonder looking at

 5

code, how could you have done it that way. What I would try and do is not to go into my

mistakes, but rather jumpstart anybody that want to implement data-driven concepts to what I

believe is currently the bullet proof method, it does not mean missile proof though. It would

however help if people have ideas where they believe I am wrong and contribute by sharing

them.

Lets look at our Internal interface. We have jhnIniFile everywhere interfacing our datastore

to our presentation layer. We want to remove that. I will jump in at the deep end and see

how successful my swimming lessons were.

From what we can see our datasource contain descriptive data regarding a class, but it also

contain a container that objects of other or the same class can be added to, members of the

parent class/object. If we look at the 3 types of classes our application have AppForm, Menu

and MenuItem we again try to descripe them on an abstact level (Table 1).

Table 1: Potential members of our 3 classes in HelloWorldVN

Class

Unique

Identifier Properties Potential Members Events

[ddApp]Form Name Text, Size,

Origin, …

[dd]Menu[s],

Unknown

Unknown

[dd]Menu Name Text,… [dd]MenuItem[s] Unknown

[dd]MenuItem Name Text, … MesageBox.Show(),

Unknown

Associate

event with

potential

member[s]

In abstract terms we therefore state that most of our Containers (main classes) can have

members, a typical Parent-Child relation. Application has Menus and maybe other members.

Menus have MenuItems, MenuItems can MenuItems or do a process. Somewhere the Parent-

>Child will stop but we have many and it is almost impossible to maintain them. We will

look at this in the next article if we can modify our DataStore to guarantee future expansion

without us having to modify the structure and repercussions in our application.

Back to our source code.

 6

5. Abstracting our interface layer

The first problem if we remove the direct interface to jhnIniFile in our classes is how to

effectively tell it what we need. Second problem we encounter, how will the Interface know

where to add the members to? Well let’s start with the adding of members first. Delegates

are the answer, so lets see if we can do something about it. It appears that we will add

Controls to a form, and ToolStrip[Menu|Separator]Item to [App]Menu. Unfotunately both

types don’t inherit from Controls, so we need to do some (Cast)o in our code. Following our

naming convention we have ControlsAdd(), which imply we going to add Controls. Similarly

we adding ToolStripItems or let us call it MenuItems and a MenuItemsAdd() which implies

we going to add a list of items to both. So how are we going to add individual items? As

said, delegates to the rescue. We can tell whoever need/want to know where to add them,

lucky we have identified who our Big Brother who knows all is: ddMemberInterface:

DELEGATE MemAdd(o AS OBJECT) AS VOID

////////// AppForm //////////
METHOD ControlsAdd() AS VOID
 LOCAL delCtrlAdd AS MemAdd
 LOCAL oMbrInt AS ddMemberInterface // Who are we g oing to request our members from
 delCtrlAdd := MemAdd{SELF, @ControlAdd()}
 oMbrInt := ddMemberInterface{}
 FOREACH ctrl in List of Controls of AppForm
 oMbrInt:GetMeMyControls(<what to look for>, delCt rlAdd)
 NEXT
RETURN

METHOD ControlAdd(o AS OBJECT) AS VOID
 SELF:Controls:Add((Controls)o)
RETURN

/////////// ddMenu //////////
METHOD MenuItemsAdd() AS VOID
 LOCAL delMemAdd AS MemAdd
 LOCAL oMbrInt AS ddMemberInterface
 delMemAdd := MemAdd{SELF, @MenuItemAdd()}
 oMbrInt := ddMemberInterface{}
 FOREACH item IN List of ToolStripItems of ddMenu
 oMbrInt:GetMeMyMenuItems(<what to look for>, delM emAdd)
 NEXT
RETURN

METHOD MenuItemAdd(o AS OBJECT) AS VOID
 SELF:Items:Add((ToolStripItem)o)
RETURN

With the interface in place for out AppForm our HelloWorldVN application miraculously

suddenly contain a member: MenuStrip (Figure 2).

 7

Figure 2: HelloWorldVN with a menu strip

Well in our next step we will have to create the Big Brother. We move our Internal Data

Store (jhnIniFile) to Big Brother and we provide a method to add our members to our classes.

To know where the member is added to, we pass in our delegate. Hey Big Brother, I need

you to get me a member! I don’t know how he looks like, but I know his name, here is the

details of the member, but by the way you don’t know who I am, just listen to what I need and

give it to me via my mediator MemAdd (Listing 5).

Listing 5: Interface between presentation layer and members
SEALED CLASS ddMemberInterface
 STATIC HIDDEN _inst AS ddMemberInterface
 HIDDEN oIni AS jhnIniFile

 STATIC CONSTRUCTOR()
 _inst := ddMemberInterface{}
 RETURN

 HIDDEN CONSTRUCTOR()
 SUPER()
 SELF:oIni := jhnIniFile{Application.ExecutablePat h + ".ini"}
 RETURN

 STATIC PROPERTY Inst AS ddMemberInterface
 GET
 RETURN _inst
 END GET
 END PROPERTY

 METHOD MemberAdd(mbrdet AS STRING, memadd AS MemAd d) AS OBJECT
 LOCAL o AS OBJECT

 IF mbrdet:StartsWith("menu:")
 o := ddMenu{mbrdet}
 memadd(o)
 ELSEIF mbrdet:StartsWith("menuitem:")
 IF mbrdet:Contains("eventtype:separator")
 o := jhnToolStripSeparator{mbrdet:Replace("menu item:", "")}
 ELSE
 o := ddMenuItem{mbrdet:Replace("menuitem:", "") }
 ENDIF
 memadd(o)
 ELSE
 MessageBox.Show("Unknown object type : " + mbrde t, "ddMemberInterface")
 ENDIF

 8

 RETURN o

 METHOD PropertyGet(owner AS STRING, prop AS STRING) AS STRING
 LOCAL sProp AS STRING
 sProp := SELF:oIni:GetString(owner, prop)
 RETURN sProp

 METHOD PropertiesGet(owner AS STRING) AS STRING[]
 RETURN SELF:oIni:GetSection(owner)

END CLASS

Our application again appeared to have changed ().

Figure 3: Completed HelloWorldVN application

6. Summary

I hope this article in the series gave enough insight into how we look at code from a data-

driven perspective. We have basically recreated the Hello World Application in data-driven

terms. In the next article we will look at our interface between the client (application) and

datastore (<Application>.exe.ini) and if there is not a way we can make it persistent, without

having to change the structure if we need new types. For this we will look at the one lookup

table (OLT), Entity Attribute Value EAV model and a way to use some of the benefits of that

in a relational environment. Happy playing with your data-driven Hello World Application☺

Included in this article you will find all the source code for HelloWorldVN. Please create a

ddApp application and maybe step through it with the debugger to see how it works. Happy

debugging☺

Till the next article: EAV and OLT principles

